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Abstract
In Pronko and Stroganov (1977 Zh. Eksp. Teor. Fiz. 72 2048, 1997 Sov.
Phys.—JETP 45 1072) the superintegrable system which describes the magnetic
dipole with spin 1

2 (neutron) in the field of linear current was considered. Here
we present its generalization for any spin which preserves superintegrability.
The dynamical symmetry stays the same as it is for spin 1

2 .

PACS numbers: 02.30.Ik, 03.65.Fd

1. Introduction

There exist few quantum systems where the degeneration of spectrum is bigger when it
follows from geometrical symmetry of the problem. The famous examples of such systems
are isotropic oscillator, Kepler problem, rotator and some other which have no physical
interpretation. This supplementary degeneration of the spectrum arises due to dynamical
symmetry (which includes trivial geometrical). In this way, the geometrical symmetry SO(3)

extends to the group SU(3) in the case of isotropic oscillator and to the group SO(4) in the
case of bound spectrum of Kepler problem. These kinds of systems are also called maximally
superintegrable. Their characteristic property is that all finite trajectories are closed. Thirty
years ago, with Stroganov, we had found another example of the physical system which
possesses supplementary degeneration of its spectrum due to the existence of hidden symmetry.
The system describes the magnetic dipole with spin 1

2 (neutron) in the field of line current.
The obvious, geometrical symmetry is the symmetry SO(2) with respect to rotation around
the z-axis, the direction of current (the translation along z is trivially separated). Dynamical
group in this case is SO(3). Here we are speaking about the symmetry for the negative
part of the spectrum. For scattering states, this group changes as in the case of the Kepler
problem and becomes the other real form of complex SO(3), namely SO(2, 1) (or E(2) for
E = 0).

The peculiarity of the system which we discovered is that it describes the particle with
spin, that was not known before. The question which was raised soon after is whether it is
possible to preserve dynamical symmetry for the particles with higher spins. The answer up
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to now was negative in spite of many attempts [2–4]. The previous considerations failed,
because people wanted to preserve the interaction of the spin particle with the external field
which corresponded to intuitive picture. But the truth is that the particle with higher spin
may interact not only by its dipole magnetic moment, but also through higher moments as
well. For example, the particle with spin 1 acquires the possibility to have apart from dipole
also quadruple interaction, for spin 3

2 , octuple interaction etc1. Certainly, this modification of
interaction does not describe any longer an elementary particle like neutron in the magnetic
field of the linear wire. At the same time, the emerged system could be useful for the
description of trapped ultra-cold atoms in this field—the subject was intensely discussed in
the literature [5, 6]. Apparently atoms, being extended objects will manifest its structure
in inhomogeneous magnetic field through interaction which is much more complicated with
simple dipole interaction of neutron. As we shall see below, the requirement of maximal
superintegrability fixes the form of interaction up to a finite number of parameters—for spin s
the number of parameters is 2s + 1. Accidentally or not, but almost all the known maximally
superintegrable systems have a wide physical application. The system which we considered
in [1] was discussed in [7] in connection with the trapping of ultra-cold neutrons. Hence it is
possible that the interaction we found for higher spins also includes some important cases.

The Hamiltonian of the system, considered in [1], is given by

H = p2
x + p2

y

2m
− µH, (1)

where µ is the magnetic moment of the particle and H is the magnetic field of linear current
directed along the z-axis:

H = CI
( y

r2
,− x

r2

)
. (2)

The constant coefficient C depends on the unit system, in practical system C = 0.2. Thus, the
final form of the Hamiltonian will be

H = p2
x + p2

y

2m
− k

sxy − syx

r2
, (3)

where the coefficient k collected all constants. For spin 1
2 the spin operator is proportional to

Pauli matrices. The Hamiltonian (1) is invariant with respect to rotations around the z-axis
generated by Jz = Lz + sz. In addition to this geometrical integral, the Hamiltonian (3)
possesses two non-trivial

Ax = 1

2
(J3px + pxJ3) + km

sxy − syx

r2
y,

Ay = 1

2
(J3py + pyJ3) − km

sxy − syx

r2
x.

(4)

The integrals (4) together with the Hamiltonian and Jz form the following algebra:

[Jz, Ax] = iAy, [Jz, Ay] = −iAx, [Ax,Ay] = −iHJz,

[Ax,H] = 0, [Ay,H] = 0.
(5)

If we now define the operators

Jx = Ax(−H)−1/2, Jy = Ay(−H)−1/2, (6)

then the following commutation relations of SO3 algebra hold true:

[Ji, Jj ] = iεijkJk. (7)

1 As a matter of fact, the importance of other interaction for higher spins manifests itself also in case of the Heisenberg
magnetic, which is integrable only if the interaction between spins is modified.
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While we designed the operators Ji , we had in mind the discrete spectrum for which the energy
is negative. For positive energy, the algebra will be SO(2, 1), because some signs in (7) will
change. The Casimir operator of algebra (7) is expressed via the Hamiltonian

J2 = J 2
1 + J 2

2 + J 2
3 = −1

4
− mk2

2H
; (8)

therefore, the Hamiltonian is given by

H = −mk2

2

1

J2 + 1
4

. (9)

The representations of SO(3) are characterized by the integer or half-integer spin. In our
problem, it is clear that the eigenvalues of J3 could be only half-integer due to addition of spin
1
2 and integer orbital momentum, therefore only half-integer representations will be realized.
So the eigenvalues of J2 will be 2n+1

2

(
2n+1

2 + 1
)
, n = 0, 1, . . . , and the spectrum of energy will

be

En = −mk2

2

1

(n + 1)2
. (10)

The supplementary degeneration in this case means that the spectrum does not depend on the
eigenvalue of Jz.

The existence of additional integrals of motion in this case is based completely on the
algebraic properties of Pauli matrices which represent spin 1

2 operators for it and direct
substitution of it; matrices which represent any other spin immediately destroy the whole
construction. The exit of this situation we will discuss in the following section.

2. High spins

Let us consider the quantum system which describes the neutral particle with arbitrary spin s
in the field of rectilinear electric current. The general form of the Hamiltonian in this case is
given by the following equation (here we omitted the trivial part of kinetic motion along the
line of the current):

H = p2

2m
+

M(s, x)

x2
, (11)

where p, x are the two-dimensional vectors and s is the spin operator, s = (sx, sy, sz). The
matrix M(s, x) will be specified later. Now we shall impose on M(s, x) only one condition:

[M(s, x), Jz] = 0, (12)

where Jz = Lz + sz. Now let us look for the additional integrals of motion in the following
form:

Ai = 1
2 (piJz + Jzpi) + Vi(s, x), (13)

where Vi(s, x) is an operator which should be defined by interaction M(s, x). The commutator
of the first term of (13) with Hamiltonian (11) gives[

H,
1

2
(piJz + Jzpi)

]
= i

2

{
Jz, ∂i

M(s, x)

x2

}
, (14)

where {A,B} = AB + BA. This form of commutator suggests the following structure of the
operator Vi(s, x):

Vi(s, x) = εij

xi

x2
M(s, x), (15)
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where εij is the antisymmetric tensor. Indeed, commuting (15) with the Hamiltonian we obtain
[
H, εij

xi

x2
M(s, x)

]
= − i

2m

[
−

{
Lz, ∂i

M(s, x)

x2

}

+

{
pk, εik

(
M(s, x)

x2
+ xj∂j

M(s, x)

x2

)}]
, (16)

Now if we add and subtract sz to Lz, we can rewrite (16) in the following form:
[
H, εij

xi

x2
M(s, x)

]
= − i

2m

[
−

{
Jz, ∂i

M(s, x)

x2

}
+ ∂i

{
sz,

M(s, x)

x2

}

+

{
pk, εik

(
M(s, x)

x2
+ xj∂j

M(s, x)

x2

)}]
. (17)

Imposing on the matrix M(s, x) apart from (12), the conditions

szM(s, x) + M(s, x)sz = 0,

(
M(s, x)

x2
+ xj∂j

M(s, x)

x2

)
= 0, (18)

we arrive at the commutativity of

Ai = 1

2
(piJz + Jzpi) − mεij

xi

x2
M(s, x) (19)

with the Hamiltonian. Note that the matrix M(s, x), which we had in the previous section
for spin 1

2 , satisfies both conditions (18) and this was the reason why we achieved the
commutativity of integrals (4) with the Hamiltonian. Now it is possible to prove that the
commutation relations for the components of Ai are

[Ai,Aj ] = −iεij Jz2mH, (20)

provided the same conditions (12) and (18) are satisfied.
Now let us take care of the matrix M(s, x). The second equation (18) is rather simple and

it requires M(s, x) to be a homogenous function of xi of degree 1. So we can present M(s, x)

in the form

M(s, x) = |x|µ(s, n), n = x
|x| , (21)

where the matrix µ(s, n) commutes with Jz and anticommutes with sz. Let us consider these
conditions in the basis |s, k〉 of the unitary representation of spin s. This basis is defined by

sz|s, k〉 = k|s, k〉, s2|s, k〉 = s(s + 1)|s, k〉,
s+|s, k〉 =

√
s(s + 1) − k(k + 1)|s, k + 1〉,

s−|s, k〉 =
√

s(s + 1) − k(k − 1)|s, k − 1〉,
k = s, s − 1, . . . ,−s.

(22)

In this basis, µ(s, n) has its matrix elements µkk′(n),

µkk′(n) = 〈s, k|µ(s, n)|s, k′〉. (23)

The first equation (18) implies the following:

(k + k′)µkk′(n) = 0. (24)

The solution of this equation is

µkk′(n) = δk,−k′ak(n), a∗
k (n) = a−k(n), (25)
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where the last condition guarantees that µ(s, n) will be Hermitian. Now let us impose the
condition (12) on matrix µ(s, n):

[Jz, µ(s, n)] = 0 ⇒ [Lz, ak(n)] + 2kak(n) = 0. (26)

This equation fixes the n-dependence of ak(n):

ak(n) = αk e−2ikϕ, eiϕ = n1 + in2, α∗
k = α−k. (27)

So, the final expression for the matrix µkk′(n),

µkk′(n) = δk,−k′αk e−2ikϕ, (28)

contains 2s + 1 real parameters which define the set of αk . The matrix µkk′(n) could also be
expressed in terms of operators s:

µ(s, n) = (βs(s+n−)2s + h.c.) + (βs−1(sz − s)(s+n−)2s−2(sz + s) + h.c.)

+ (βs−2(sz − s)(sz − s + 1)(s+n−)2s−4(sz + s)(sz + s − 1) + h.c.) · · · . (29)

The structure of this expression could be understood from the following explanations. First,
note that due to condition (26), the matrix µ(s, n) can depend only on the combinations of
(s+n−), (s−n+) and sz. Second, the matrix µ(s, n) in representation (22) is anti-diagonal and in
order to obtain an operator which has nonzero matrix elements in the upper and lower corners,
we need to take a linear combination of (s+n−) and its conjugated in maximal power—for spin
s it is 2s. In this way, we obtain the first term of (29). The second term is obtained with the
same strategy but here we need to eliminate the action of (s+n−)2s−2 on the vectors |−s, s〉
and 〈s, s|. This explains the appearance of the fringe multipliers (sz − s) and (sz + s). The
rest is just a repetition of this procedure. The parameters βk in (29) play the same role, as αk

in (27) but only βs = αs , the others are different because of additional multipliers, depending
on sz in (29).

It is interesting that even for s = 1
2 , we have not only one type of interaction, which

respects dynamical symmetry, but two. Indeed, according to the present consideration, the
Hamiltonian

H = p2

2m
+ a

sxy − syx

r2
+ b

sxx + syy

r2
(30)

also possesses dynamical symmetry. The additional term in this Hamiltonian describes electric
dipole in electric field �r

r2 which is produced by rectilinear charge.
The last issue which we are going to discuss is the analogue of formula (9) in the generic

case. Defining as in (6) the operators Ji , having in mind discrete spectrum, we obtain

J2 +
1

4
= −m

2

µ(s, n)2

H
. (31)

The matrix µ(s, n) commutes with the Hamiltonian, as it follows from its definition and the
form of H (11), and from (31) we obtain

H = −m

2

µ(s, n)2

J2 + 1
4

. (32)

As the matrix µ(s, n) in the bases |s, k〉 is anti-diagonal, its square is diagonal

(µ(s, n)2)kk′ = diag{|αs |2, |αs−1|2, . . . , |αs |2}, (33)

so it could be written as a linear combination of projectors on the states with definite values
of sz.

In conclusion, we summarize the above discussion. It is shown that the problem introduced
in [1] for spin 1

2 admits generalization for arbitrary spin which preserves dynamical symmetry.
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The interaction depends on 2s +1 parameters which leaves a big freedom for applications. The
energy spectrum has the same character 1/n2 as in the case of spin 1

2 , but for the wavefunctions
we need to select the proper representations of SO(3) corresponding to the given value of
spin. In [1], we have constructed explicitly the invariant form of the Schrödinger equation for
our system as was done by Fock [8] for the Kepler problem. This form exists also for arbitrary
spin. In the present paper, we have not touched the subject of possible applications of the
system we considered, as this is the theme for a separate paper.
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